
The ROMES method for
reduced-order-model uncertainty quantification:

application to data assimilation

M. Drohmann and K. Carlberg

Sandia National Laboratories

Workshop on Model Order Reduction and Data
Paris, France

January 6, 2014

ROMES M. Drohmann and K. Carlberg 1 / 24



Data assimilation by Bayesian inference

Structural health monitoring

source:  Theoretical & Computational Biophysics Group, UIUCsource:  Holger Speckmann,  Airbus

Given sensor data, what is the updated knowledge of
material properties throughout the aircraft?

Bayesian inference problem

inputs µ → high-fidelity model → outputs y

Given measurements of the outputs, what is the posterior
distribution of the inputs?
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Bayesian inference

inputs µ → high-fidelity model → outputs y

Bayes’ theorem

P(µ|ȳ) =
P (ȳ|µ)P(µ)

P(ȳ)

measured outputs ȳ = y(µ?) + ε with noise ε ∼ N (0, σ2I)
posterior P(µ|ȳ) is sought
prior P (µ) is given
normalizing factor P (ȳ) is handled indirectly
likelihood P (ȳ|µ) ∼ N (y(µ), σ2I) sampling requires
high-fidelity model evaluations

Objective: numerically sample the posterior distribution

+ achievable in principle, e.g., by MCMC or importance sampling.
- barrier: sampling requires high-fidelity forward solves

ROMES M. Drohmann and K. Carlberg 3 / 24



Reduced-order modeling and Bayesian inference

inputs µ → reduced-order model → outputs yred

Replace the high-fidelity model with reduced-order model
measured outputs ȳ = y(µ?) + ε ≈ yred(µ?) + ε
likelihood P (ȳ|µ) ∼ N (yred(µ), σ2I) sampling requires
reduced-order model evaluations
sampling from the posterior becomes tractable

Problem: neglects reduced-order-model errors

ȳ = y(µ?) + ε (1)

= yred(µ?) + δy(µ?) + ε (2)

“An interesting future research direction is the inclusion of
estimates of reduced model error as an additional source of
uncertainty in the Bayesian formulation.” [Galbally et al., 2009]

Goal: construct a statistical model of the
reduced-order-model error
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Strategies for ROM error quantification

1 Rigorous error bounds
+ independent of input-space dimension
- not amenable to statistical analysis
- often overestimate the error (i.e., high effectivity)
- improving effectivity incurs larger costs

[Huynh et al., 2010, Wirtz et al., 2012] or intrusive reformulation of
discretization [Yano et al., 2012]

2 Multifidelity correction [Eldred et al., 2004]
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surrogate model of low-fidelity error as a function of inputs
‘correct’ low-fidelity outputs with surrogate

+ amenable to statistics
- curse of dimensionality
- ROM errors often highly oscillatory in the input space

[Ng and Eldred, 2012]
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Our key observation

10−5 10−4

10−5

10−4

Residual r/error bound

er
ro
r
(e
n
er
g
y

n
o
rm

)
|||u

h
−

u
re

d
|||

10−5

10−4

10−5

10−4

10−5

10−4

Residual r er
ro
r b

ou
nd

er
ro
r
(e
n
er
g
y

n
o
rm

)
|||u

h
−

u
re

d
|||

(r; |||δu|||)
(∆µ

u ; |||δu|||)

Residual and error bound often correlate with the true error

Main idea: construct a stochastic process that maps error
indicators (not inputs µ!) to a distribution of the error

+ independent of input-space dimension
+ amenable to statistics

Reduced-order model error surrogates
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ROMES
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(ii) RVM

training point mean 95% confidence “uncertainty of mean”

error �

error indicator ⇢

Construct a stochastic process of the ROM error δ̃(ρ)

Select a small number of error indicators ρ = ρ(µ) that are

1 cheaply computable online, and
2 lead to low variance of the stochastic process.

First attempt: Gaussian process (GP) such that random
variables (δ̃(ρ1), δ̃(ρ2), . . .) have joint Gaussian distribution
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Gaussian process [Rasmussen and Williams, 2006]

Definition (Gaussian process)

A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

δ̃(ρ) ∼ GP(m(ρ), k(ρ,ρ′))

mean function m(ρ); covariance function k(ρ,ρ′)

given a training set {(δi ,ρi )}, the mean and covariance
functions can be inferred via Bayesian analysis

consider two types of Gaussian processes

1 kernel regression [Rasmussen and Williams, 2006]

2 relevance vector machine (RVM) [Tipping, 2001]
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GP #1: Kernel regression [Rasmussen and Williams, 2006]

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp�xq| by |xp�xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors a↵ect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f⇤ according to the
prior is 

f
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K(X, X) K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)
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. (2.18)

If there are n training points and n⇤ test points then K(X, X⇤) denotes the
n ⇥ n⇤ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X⇤, X⇤) and K(X⇤, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

(a) prior

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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(b) posterior

prior: δ̃(ρ) ∼ N (0,K
(
ρ,ρ

)
+ σ2I)

k(ρi ,ρj) = exp
‖ρi−ρj‖2

r2 is a positive definite kernel

ρ :=
[
ρ

train
ρ

predict

]T

posterior: δ̃(ρpredict) ∼ N (m(ρpredict), cov(ρpredict))

infer hyperparameters σ2 and r 2
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GP #2: Relevance vector machine [Tipping, 2001]

δ̃(ρ) =
M∑

m=1

wmφm(ρ) + ε

fixed basis functions φm (e.g., polynomials, radial-basis
functions)

stochastic coefficients wm

noise ε ∼ N (0, σ2I)

prior: w ∼ N (0, diag(αi ))

posterior: w ∼ N (m,Σ) leads to posterior dist. of δ̃(ρ)

infer hyperparameters σ2 and αi
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ROMES Algorithm

Offline

1 Populate ROMES database {(δ(µ), ρ̄(µ)) | µ ∈ Dtrain},
where ρ̄ denotes candidate indicators.

2 Identify a few error indicators ρ ⊂ ρ̄ that lead to low variance
in the Gaussian process.

3 Construct the Gaussian process δ̃(ρ) ∼ GP(m(ρ), k(ρ,ρ′)) by
Bayesian inference.

Online (for any µ? ∈ D)

1 compute the ROM solution

2 compute error indicators ρ(µ?)

3 obtain δ̃(ρ(µ?)) ∼ N (m(ρ(µ?))), k(ρ(µ?),ρ(µ?))

4 correct the ROM solution
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Thermal block (Parametrically coercive and compliant, affine, linear, elliptic)

1 2 3

4 5 6

7 8 9

ΓD

ΓN1

ΓN0

4c(x ;µ)u(x ;µ) = 0 in Ω u(µ) = 0 on ΓD

∇c(µ)u(µ) · n = 0 on ΓN0 ∇c(µ)u(µ) · n = 1 on ΓN1

Inputs µ ∈ [0.1, 10]9 define diffusivity c in subdomains
Output y(µ) =

∫
ΓN1

u(µ)dx is compliant

ROM constructed via RB–Greedy [Patera and Rozza, 2006]
Consider two errors: 1) energy norm of state-space error
|||u(µ)− ured(µ)|||, 2) output bias y(µ)− yred(µ)
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Error #1: energy norm |||u(µ)− ured(µ)|||
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(ii) RVM

training point mean 95% confidence “uncertainty of mean”
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(ii) RVM

training point mean 95% confidence “uncertainty of mean”

ROMES (Kernel, residual indicator) in log-log space promising
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Gaussian-process assumptions verified (Kernel, residual indicator)
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Observed estimates in predicted interval:

predicted T = 10 T = 35 T = 65 T = 95

80 % 49.00 70.95 76.21 77.74
90 % 59.21 82.05 86.95 88.26
95 % 67.53 89.11 91.95 93.26
98 % 75.58 93.00 95.11 95.68
99 % 80.16 94.42 96.26 96.68

histogram inferred pdf
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GP variables converge (Kernel GP, residual indicator)
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Can achieve ‘statistical rigor’ (Kernel GP, residual indicator)
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ROMES: Kernel and RVM GP comparison
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(ii) RVM

training point mean 95% confidence “uncertainty of mean”

RVM (Legendre-polynomial basis functions): significant
uncertainty in mean’s high-order polynomial coefficients
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ROMES: Kernel and RVM GP comparison
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GP structure and confidence intervals verified in both cases
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Kernel GP produces better effectivity
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Error #2: output bias y(µ)− yred(µ)
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+ Residual and error bound are good indicators (ROMES)

- Inputs are poor indicators (Multifidelity correction)
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Gaussian-process assumption verification
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+ ROMES (Kernel GP, residual indicator) confidence intervals
converge.

- Multifidelity correction (Kernel GP, input indicator)
confidence intervals do not converge.

ROMES M. Drohmann and K. Carlberg 20 / 24



Bias improvement

bias reduction =
E
(

yred(µ) + δ̃y(µ)− y(µ)
)

yred(µ)− y(µ)
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+ ROMES reduces bias by roughly an order of magnitude

- Multifidelity correction often increases the bias
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Conclusions

ROMES
combines existing ROM error indicators with supervised
machine learning to statistical quantify ROM error
relies on identifying error indicators that yield low variance
‘statistical rigor’ achievable
outperforms multifidelity correction (inputs are poor error
indicators)
highlights strength of reduced-order models for data
assimilation: other surrogates (likely) do not have such
powerful error indicators

Future work
apply to nonlinear, time-dependent problems
incorporate in likelihood function

ȳ = yred(µ?) + δy(µ?) + ε

where δy and ε may have different distributions
develop error indicators for this purpose
automated selection of indicators and Gaussian process
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Questions?

M. Drohmann & K. Carlberg, “The ROMES method for
reduced-order-model uncertainty quantification,” in preparation.
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